
Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

CSE 2011 Fundamentals of Data Structures

Introduction

Computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and
especially because it produces objects of beauty.

- Donald Knuth

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Instructor

•  James Elder
–  0003G Computer Science and Engineering Building

tel: (416) 736-2100 ext. 66475 fax: (416) 736-5857
email: jelder@yorku.ca website: www.yorku.ca/jelder

–  Office Hour: Thursday 14:30-15:30

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Teaching Assistants

•  Ron Tal
–  Tel: (416) 736-2100 ext. 66117

–  Email: rontal@cse.yorku.ca

–  Office Hour: Tues 14:30-15:30 in CSEB 2013, or by appointment
(starting Jan 10)

•  Paria Mehrani
–  Tel: (416) 736-2100 ext. 66117

–  Email: paria.mehrani@gmail.com

–  Office Hour: Mon 14:30-15:30 in CSEB 2013, or by appointment
(starting Jan 16)

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Course Website

•  www.cse.yorku.ca/course/2011

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Textbook

•  Goodrich, M.T. & Tamassia R. (2010). Data Structures
and Algorithms in Java (5th ed.) John Wiley & Sons.
Available in the York University Bookstore.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Summary of Requirements

Component Weight
Programming Assignments (4) 20%
Midterm test (closed book) 30%
Final exam (closed book) 50%

Please see syllabus posted on website for more detailed information.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

How to do well in this course

1.  Attend all of the lectures!

2.  Do the readings prior to each lecture.

3.  Work hard on each assignment.
1.  Do not leave them to the last moment.

2.  Ask one of the TAs or me if there is something you do not
understand.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

8

On the slides

•  These slides:
–  are posted on the course website.

–  may change up to the last minute as I polish the lecture.

–  Incorporate slides produced by the textbook authors (Goodrich &
Tamassia).

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

9

Please ask questions!

Help me know what people
 are not understanding!

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Lecture 1

Data Structures and Object-Oriented Design

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Data Structures & Object-Oriented Design
•  Definitions

•  Software Engineering

•  Efficiency and Asymptotic Analysis

•  Principles of Object-Oriented Design

•  Inheritance

•  Polymorphism

•  Interfaces

•  Casting

•  Generics

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Programs = Data Structures + Algorithms

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Principles of Object Oriented Design

•  Programs consist of objects.

•  Objects consist of
–  Data structures

–  Algorithms to construct, access and modify these structures.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Data Structure

•  Definition: An organization of information, usually in
memory, such as a queue, stack, linked list, heap,
dictionary, or tree.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Algorithm
•  Definition: A finite set of unambiguous instructions

performed in a prescribed sequence to achieve a
goal, especially a mathematical rule or procedure
used to compute a desired result.
–  The word algorithm comes from the name of the 9th

century Persian mathematician
Muhammad ibn Mūsā al-Khwārizmī.

–  He worked in Baghdad at the time when it was the
centre of scientific studies and trade.

–  The word algorism originally referred only to the rules
of performing arithmetic using Arabic numerals but
evolved via European Latin translation of al-
Khwarizmi's name into algorithm by the 18th century.

–  The word evolved to include all definite procedures for
solving problems or performing tasks.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Data Structures We Will Study
•  Linear Data Structures

–  Arrays

–  Linked Lists

–  Stacks

–  Queues

–  Priority Queues

•  Non-Linear Data Structures
–  Trees

–  Heaps

–  Hash Tables

–  Search Trees

•  Graphs
–  Directed Graphs

–  Weighted Graphs

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Some Algorithms We Will Study

•  Searching

•  Sorting

•  Graph Search

•  Dynamic Programming

Please see syllabus posted on website for detailed schedule (tentative).

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Design Patterns

•  A template for a software solution that can be applied to
a variety of situations.

•  Main elements of solution are described in the abstract.

•  Can be specialized to meet specific circumstances.

•  Example algorithm design patterns:
–  Recursion

–  Divide and Conquer

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Object-Oriented Design

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Software Engineering
•  Software must be:

–  Readable and understandable
•  Allows correctness to be verified, and software to be easily updated.

–  Correct and complete
•  Works correctly for all expected inputs

–  Robust
•  Capable of handling unexpected inputs.

–  Adaptible
•  All programs evolve over time. Programs should be designed so that re-use,

generalization and modification is easy.

–  Portable
•  Easily ported to new hardware or operating system platforms.

–  Efficient
•  Makes reasonable use of time and memory resources.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Premature Optimization

•  Premature optimization is the root of all evil.
–  Donald Knuth

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Premature Optimization

•  In general we want programs to be efficient. But:
–  Obviously it is more important that they be correct.

–  It is often more important that they be
•  Understandable

•  Easily adapted

–  In striving for efficiency, it is easy to:
•  Introduce bugs

•  Make the program incomprehensible

•  Make the program very specific to a particular application, and thus
hard to adapt or generalize.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Asymptotic Analysis

•  Asymptotic analysis is a general method for categorizing
the efficiency of algorithms.

•  Asymptotic analysis helps to distinguish efficiencies that
are important from those that may be negligable.

•  This will help us to balance the goal of efficiency with
other goals of good design.

•  This will be the topic of Lecture 2.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Principles of Object Oriented Design

•  Object oriented design facilitates:
–  Debugging

–  Comprehensibility

–  Software re-use

–  Adaptation (to new scenarios)

–  Generalization (to handle many scenarios simultaneously)

–  Portability (to new operating systems or hardware)

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Principles of Object-Oriented Design

•  Abstraction

•  Encapsulation

•  Modularity

•  Hierarchical Organization

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Abstraction
•  The psychological profiling of a programmer is mostly the

ability to shift levels of abstraction, from low level to high
level. To see something in the small and to see
something in the large.
–  Donald Knuth

Wassily Kandinsky (Russian, 1866-1944)
Abstraction, 1922, Lithograph from the fourth Bauhaus portfolio

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Encapsulation

•  Each object reveals only what other objects need to see.

•  Internal details are kept private.

•  This allows the programmer to implement the object as
she or he wishes, as long as the requirements of the
abstract interface are satisfied.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Modularity

•  Complex software systems are
hard to conceptualize and
maintain.

•  This is greatly facilitated by
breaking the system up into
distinct modules.

•  Each module has a well-
specified job.

•  Modules communicate through
well-specified interfaces.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Hierarchical Design

•  Hierarchical class definitions
allows efficient re-use of
software over different
contexts.

Is a

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Inheritance

•  Object-oriented design provides for hierarchical classes
through the concept of inheritance.

•  A subclass specializes or extends a superclass.

•  In so doing, the subclass inherits the variables and
methods of the superclass.

•  The subclass may override certain superclass methods,
specializing them for its particular purpose.

•  The subclass may also define additional variables and
methods that extend the definition of the superclass.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Types of Method Overriding

•  Generally methods of a subclass replace superclass
methods.

•  An exception is constructor methods, which do not
replace, but refine superclass constructor methods.

•  Thus invocation of a constructor method starts with the
highest-level class, and proceeds down the hierarchy to
the subclass of the object being instantiated.

•  This is either accomplished implicitly, or explicitly with
the super keyword.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Refinement Overriding
public class Camera {
 private String cameraMake;
 private String cameraModel;

 Camera(String mk, String mdl) { //constructor
 cameraMake = mk;
 cameraModel = mdl;
 }

 public String make() { return cameraMake; }
 public String model() { return cameraModel; }
}

public class DigitalCamera extends Camera{
 private int numPix;

 DigitalCamera(String mk, String mdl, int n) { //constructor
 super(mk, mdl);
 numPix = n;
 }

 public int numberOfPixels() { return numPix; }
}

DigitalCamera myCam = new DigitalCamera("Nikon", "D90", 12000000);

extends

instantiates

Superclass
Camera

Sublass
DigitalCamera

Object
myCam

extends

refines

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Refinement Overriding
public class Camera {
 private String cameraMake;
 private String cameraModel;

 Camera(String mk, String mdl) { //constructor
 cameraMake = mk;
 cameraModel = mdl;
 }

 public String make() { return cameraMake; }
 public String model() { return cameraModel; }
}

public class DigitalCamera extends Camera{
 private int numPix;

 DigitalCamera(String mk, String mdl) { //constructor
 super(mk, mdl);
 numPix = 0;
 }

 public int numberOfPixels() { return numPix; }
}

DigitalCamera myCam = new DigitalCamera("Nikon", "D90”);

extends

instantiates

Superclass
Camera

Sublass
DigitalCamera

Object
myCam

extends

refines

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Refinement Overriding
public class Camera {
 private String cameraMake;
 private String cameraModel;

 Camera() { //constructor
 cameraMake = “Unknown make”;
 cameraModel = “Unknown model”;
 }

 public String make() { return cameraMake; }
 public String model() { return cameraModel; }
}

public class DigitalCamera extends Camera{
 private int numPix;

 DigitalCamera() { //constructor
 numPix = 0;
 }

 public int numberOfPixels() { return numPix; }
}

DigitalCamera myCam = new DigitalCamera();

extends

instantiates

Superclass
Camera

Sublass
DigitalCamera

Object
myCam

extends

refines
(implicit super() call)

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Replacement Overriding
public class DigitalCamera extends Camera{
 private int numPix;

 DigitalCamera(String mk, String mdl, int n) { //constructor
 super(mk, mdl);
 numPix = n;
 }

 public int numberOfPixels() { return numPix; }
 public byte[][][] getDigitalImage() { return takeDigitalPhoto(); }
}

public class AutoDigitalCamera extends DigitalCamera{

 AutoDigitalCamera(String mk, String mdl, int n) { //constructor
 super(mk, mdl, n);
 }

 public byte[][][] getDigitalImage() {
 autoFocus();
 return takeDigitalPhoto();
 }
}

DigitalCamera myCam = new AutoDigitalCamera("Nikon", "D90", 12000000);
byte[][][] myImage = myCam.getDigitalImage();

extends

instantiates

Superclass
DigitalCamera

Subclass
Auto-

DigitalCamera

Object
myCam

replaces

polymorphism

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Polymorphism

•  Polymorphism = “many forms”

•  Polymorphism allows an object variable to take different
forms, depending upon the specific class of the object it
refers to.

•  Suppose an object o is defined to be of class S.

•  It is now valid to instantiate o as an object of any type T
that extends S.

•  Thus o can potentially refer to a broad variety of objects.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Replacement Overriding
public class DigitalCamera extends Camera{
 private int numPix;

 DigitalCamera(String mk, String mdl, int n) { //constructor
 super(mk, mdl);
 numPix = n;
 }

 public int numberOfPixels() { return numPix; }
 public byte[][][] getDigitalImage() { return takeDigitalPhoto(); }
}

public class AutoDigitalCamera extends DigitalCamera{

 AutoDigitalCamera(String mk, String mdl, int n) { //constructor
 super(mk, mdl, n);
 }

 public byte[][][] getDigitalImage() {
 autoFocus();
 return takeDigitalPhoto();
 }
}

DigitalCamera myCam = new AutoDigitalCamera("Nikon", "D90", 12000000);
byte[][][] myImage = myCam.getDigitalImage();

extends

instantiates

Superclass
DigitalCamera

Subclass
Auto-

DigitalCamera

Object
myCam

replaces

polymorphism

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Abstract Data Type (ADT)

•  A set of data values and associated operations that are
precisely specified independent of any particular
implementation.

•  ADTs specify what each operation does, but not how it
does it.

•  ADTs simplify the design of algorithms.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Abstract Data Type (ADT)

•  In Java, an ADT
–  can be expressed by an interface.

–  is realized as a complete data structure by a class.

–  is instantiated as an object.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Application Programming Interfaces (APIs)

•  The interface for an ADT specifies:
–  A type definition

–  A collection of methods for this type

–  Each method is specified by its signature, comprising
•  The name of the method

•  The number and type of the arguments for each method.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

ADT Example
public interface Device {
 public String make();
 public String model();
}

public class Camera implements Device {

 private String cameraMake;
 private String cameraModel;
 private int numPix;

 Camera(String mk, String mdl, int n) { //constructor
 cameraMake = mk;
 cameraModel = mdl;
 numPix = n;
 }

 public String make() { return cameraMake; }
 public String model() { return cameraModel; }
 public int numberOfPixels() { return numPix; }
}

 Camera myCam = new Camera("Nikon", "D90", 12000000);

implements

instantiates

Interface
Device

Class
Camera

Object
myCam

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Multiple Inheritance

•  In Java, a class can have
at most one direct parent
class.

•  Thus classes must form
trees.

•  This avoids the ambiguity
that would arise if two
parents defined methods
with the same signature.

Device

Camera Actuator

Digital
Camera

Analog
Camera

Stepping
Motor

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Multiple Inheritance

•  However, interfaces can have
more than one direct parent.

•  Thus interfaces do not necessarily
form trees, but directed acylic
graphs (DAGs).

•  No ambiguity can arise, since
methods with the same signature
can be considered as one.

•  This allows mixin of unrelated
interfaces to form more complex
ADTs.

Device

Camera Actuator

Pan/Tilt/Zoom
Camera

public interface PTZCamera extends Camera, Actuator {
 …

}

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Casting

•  Casting may involve either a widening or a narrowing
type conversion.

•  A widening conversion occurs when a type T is
converted into a ‘wider’ type U.
–  Widening conversions are performed automatically.

•  A narrowing conversion occurs when a type T is
converted into a ‘narrower’ type U.
–  Narrowing conversions require an explicit cast.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Casting Examples

DigitalCamera myCam1 = new DigitalCamera("Nikon","D90");

DigitalCamera myCam2 = new AutoDigitalCamera("Olympus","E30",12000000);

AutoDigitalCamera myCam3 = new AutoDigitalCamera("Sony","A550",14000000);

myCam1 = myCam3; //widening conversion

myCam3 = myCam1; //compiler error

myCam3 = myCam2; //compiler error

myCam3 = (AutoDigitalCamera) myCam1; //run-time exception

myCam3 = (AutoDigitalCamera) myCam2; // valid narrowing conversion

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Generics

•  A generic type is a type that is not defined at
compilation time.

•  A generic type becomes fully defined only at run time.

•  This allows us to define a class in terms of a set of
formal type parameters, that can be used to abstract
certain variables.

•  Only when instantiating the object, do we specify the
actual type parameters to be used.

when instantiated as a variable.

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Generics Example
/** Creates a coupling between two objects */
public class Couple<A, B> {
 A obj1;
 B obj2;

 public void set(A o1, B o2) {
 obj1 = o1;
 obj2 = o2;
 }
}

Camera myCam1 = new DigitalCamera("Nikon","D90”,12000000);
Camera myCam2 = new AutoDigitalCamera("Olympus","E30",12000000);

Couple<Camera,Camera> stereoCamera = new Couple<Camera,Camera>();

stereoCamera.set(myCam1, myCam2);

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Generics Example

•  Note that two things are happening here:
1.  The variable stereoCamera is being defined of type

Couple<Camera, Camera>

2.  An object of type Couple<Camera, Camera> is created and
stereoCamera is updated to refer to that object.

Couple<Camera,Camera> stereoCamera = new Couple<Camera,Camera>();

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Inheritance with Generics

•  Generic classes can serve as superclasses or subclasses of other
generic and non-generic classes.

•  Thus, for example, if a class CloselyCouple<T, T> is defined to
extend Couple<T, T>, then it would be valid to instantiate
stereoCamera as:

Couple<Camera,Camera> stereoCamera = new Couple<Camera,Camera>();

Couple<Camera,Camera> stereoCamera = new CloselyCouple<Camera,Camera>();

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

But be careful…

•  DigitalCamera is a subclass of Camera.

•  This does NOT mean that Couple<DigitalCamera, DigitalCamera> is
a subclass of Couple<Camera, Camera>.

•  Thus

 or

 generate compile errors.

Couple<Camera,Camera> stereoCamera = new Couple<DigitalCamera,DigitalCamera>();

Couple<Camera,Camera> stereoCamera = new CloselyCouple<DigitalCamera,DigitalCamera>();

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Subtyping with Wildcards

•  In order to obtain this kind of subtyping with generics, you can use
wildcards.

•  For example:

 or

Couple<? extends Camera, ? extends Camera> stereoCamera
= new Couple<DigitalCamera,DigitalCamera>();

Couple<? extends Camera, ? extends Camera> stereoCamera
= new CloselyCouple<DigitalCamera,DigitalCamera>();

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Pseudocode

•  High-level description of an
algorithm

•  More structured than English
prose

•  Less detailed than a program

•  Preferred notation for
describing algorithms

•  Hides program design issues

Algorithm arrayMax(A, n)
 Input array A of n integers
 Output maximum element of A

 currentMax A[0]
 for i 1 to n - 1 do
 if A[i] > currentMax then
 currentMax A[i]
 return currentMax

Example: find max element of an array

Last Updated: January 5, 2012 CSE 2011
Prof. J. Elder

Pseudocode Details

•  Control flow
–  if … then … [else …]

–  while … do …

–  repeat … until …

–  for … do …

–  Indentation replaces braces

•  Method declaration
Algorithm method (arg [, arg…])

 Input …

 Output …

•  Method call
var.method (arg [, arg…])

•  Return value
return expression

•  Expressions
Assignment

(like = in Java)

=  Equality testing
(like == in Java)

n2 Superscripts and other
mathematical formatting
allowed

